If it's not what You are looking for type in the equation solver your own equation and let us solve it.
500=50t+5t^2
We move all terms to the left:
500-(50t+5t^2)=0
We get rid of parentheses
-5t^2-50t+500=0
a = -5; b = -50; c = +500;
Δ = b2-4ac
Δ = -502-4·(-5)·500
Δ = 12500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12500}=\sqrt{2500*5}=\sqrt{2500}*\sqrt{5}=50\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50\sqrt{5}}{2*-5}=\frac{50-50\sqrt{5}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50\sqrt{5}}{2*-5}=\frac{50+50\sqrt{5}}{-10} $
| 3·(x+2)=2x+3= | | 8x+9x-3x-5=23 | | x-3=8=10 | | 8c=c+21 | | 20b2−6b−8=0 | | 0=3x^2-18x+10000 | | 4x+40=x-9 | | -12=-3k | | 5x-3x-5=5 | | -9=c+5 | | -70=-7s | | -6=4+z | | 44+2x=x | | 9x+0.05=20 | | d+2=-8 | | c/20-8=-10 | | -4(p+13)=16 | | –4(p+13)=16 | | ?x0.60=450 | | 2(5x-3)-4=18 | | 33=5{x+8}+3 | | 3t^2-24t-363t^2-24t-36=0 | | 6x+102=1086 | | -3(u+5)=-9u+45 | | 7(x-5)+25=7x-10 | | a=3600(1+.03/12)^12*8 | | a-7.98=74.2 | | 4x+14+3x-3=6x | | 3x+8=48−2x | | 6x-10+x+3x-11=180 | | 2(4+3x+x)=18.4 | | x^2-6x+51=0 |